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Abstract. In the context of a non-linear gauge theory of the Poincaré group, we show that covariant
derivatives of Dirac fields include a coupling to the translational connections, manifesting itself in the
matter action as a universal background mass contribution to fermions.
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1 Introduction

Conceived as an alternative to the standard general rela-
tivistic metric approach to gravity, gauge theories of space-
time groups describe gravitational forces in close analogy
to the remaining interactions [1–9]. The Lorentz group
and the GL(4 , R) group are usual candidates proposed
by various authors [2,3,10,11] to play the role of local
symmetries. Instead, Hehl et al. [4,8,12,13] consider grav-
ity as the gauge theory of either the Poincaré or the affine
group: in any case of a group including translations. Ac-
tually, the interpretation of tetrads as a certain kind of
translational connections allows for an uniform descrip-
tion of all known interactions, gravity included, in terms
of gauge potentials declared as the unique force mediators
[14–17].

We are interested in analyzing the consequences for
matter fields of considering translations included in the
gauge group, as for instance in the Poincaré gauge the-
ory (PGT) of gravity, where the full Poincaré group is
treated as the local gauge group of a Yang–Mills type
theory. Given that such approach is a serious candidate
to become the fundamental theory of gravity, obviously
we must know how the corresponding Poincaré covariant
derivatives of matter fields look like, with both the homo-
geneous Lorentz group contributions and those of transla-
tions taken into account. The present paper is devoted to
give an answer to the question how translational connec-
tions couple in particular to Dirac fields.

Independently of the interest of PGT in itself, the fact
that we choose it with preference to a more general gauge
theory of gravitation, such as metric-affine gravity (MAG),
is partly determined by a technical reason, namely the
possibility of building an explicit matrix representation of
the Poincaré algebra. In fact, besides the usual spin oper-
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ators σαβ constituting the representation of the Lorentz
generators acting on Dirac fields, one can introduce the
complementary realization πµ of the translational gener-
ators. The affine group is more problematic to deal with
due to the fact that no finite-dimensional spinor represen-
tation of GL(4 , R) exists [8].

As an unexpected consequence of the explicit construc-
tion of covariant Poincaré derivatives with intrinsic trans-
lations, we find that the translational connections con-
tribute to the Dirac action with a fermion mass term of
PGT-gravitational nature. Such a result is exclusive for
a certain kind of gauge theories of gravity, having noth-
ing to do either with ordinary general relativity or with
gauge approaches based on spacetime groups not includ-
ing translations. More precisely, we derive the background
fermion mass from the non-linear approach to PGT estab-
lished by us in a number of previous papers [14–18]. There
we developed a suitable treatment of spacetime groups
with translations, explaining the identification of tetrads
as (non-linear) translational connections, and one of us
proposed an adapted fiber bundle description [19].

In next section we review a few main concepts, neces-
sary to deduce the key formula (26) expressing non-linear
connections in terms of linear ones. Then in Sect. 3 we ap-
ply the non-linear procedure to the Poincaré group, paying
special attention to covariant derivatives of Dirac fields,
and finally in Sect. 4 we build the matter action showing
the emergence of the translation-induced mass term.

2 Generalized bundle structure
of gauge theories

2.1 Composite fiber bundles

The ordinary gauge theory of a given Lie groupG is known
to have the structure of a principal bundle P (M ,G)
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equipped with a connection, being matter fields defined
on associated bundles. However, gauge theories involv-
ing non-linearly realized local symmetries, as for instance
gauge theories of spacetime groups, require a slight mod-
ification of this bundle scheme, as discussed in [19]. The
composite fiber bundles studied there are particularly suit-
able to highlight the underlying geometry of gauge theo-
ries of groups including translations, such as the Poincaré
gauge theory of gravity, thus constituting the main sup-
port of the present paper. Let us briefly remind the reader
of its defining features. For what follows, see [20–23], as
well as [24], pp. 54 and 57.

Let πPM : P → M be a principal fiber bundle with
structure Lie group G, and let H be a closed subgroup
of G. The quotient space G/H constitutes a manifold on
which G acts on the left in a natural way. Then it is pos-
sible to build the P -associated bundle πΣM : Σ → M
with standard fiber G/H and with total space consisting
of the quotient space Σ = (P × G/H)/G of the Carte-
sian product P ×G/H by the right action of G defined as
P ×G/H � (u , ξ ) → (ug , g−1ξ ) ∈ P ×G/H , g ∈ G. The
total space Σ can be identified with the quotient space
P/H of P by the right action of H on P , and conse-
quently one finds P (Σ ,H) to be a principal fiber bundle
with structure group H and with well defined projection
πPΣ : P → Σ onto the base space Σ = P/H; see Propo-
sition 5.5 of [24]. Indeed, each orbit uH through u ∈ P
– diffeomorphic to the standard fiber H – projects into a
single element (a left coset) of P/H.

Non-linearly realized gauge theories to be studied here
differ from ordinary gauge theories in that they are based
on principal bundles P (M ,G) whose structure group G is
reducible to a closed subgroup H. According to Proposi-
tion 5.6 of [24], such a reducibility of the structure group
G to H ⊂ G is guaranteed if and only if a cross section
sMΣ : M → Σ = P/H of the associated bundle Σ exists.
Furthermore, there is a one to one correspondence between
sections sMΣ and the reduced subbundles of πPΣ : P → Σ
consisting of the set of points u ∈ P such that

πPΣ(u) = sMΣ ◦ πPM (u) ; (1)

see [24]. From condition (1) follows trivially

πPM = πΣM ◦ πPΣ , (2)

providing a decomposition of the total projection πPM

into partial projections. Accordingly, the principal bundle
πPM : P → M transforms into the composite bundle

πΣM ◦ πPΣ : P → Σ → M . (3)

In (3) we distinguish two bundle sectors, characterized
respectively by the partial projections

πPΣ : P → Σ , πΣM : Σ → M . (4)

The latter one, with standard fiber G/H, can be seen as
an intermediate space, in the sense that it is built over the
primary base space M , and simultaneously plays a role as
the base space of the principal bundle πPΣ : P → Σ with

structure group H. More precisely, in the context of com-
posite bundles one can regard the G-diffeomorphic fibers
of P (M ,G) as being, say, bent into two sectors, corre-
sponding respectively to the fibers H of πPΣ : P → Σ
and G/H of πΣM : Σ → M . The H-diffeomorphic fiber
branches are attached to points of the intermediate base
space Σ, which trivialize locally as (x , ξ), with ξ coordi-
natizing the fiber branches G/H attached to x ∈ M .

In parallel to (2), the local sections sMP : M → P are
decomposed as

sMP = sΣP ◦ sMΣ , (5)

see Sect. V of [19]. In terms of suitable zero sections, de-
noting as σMP those corresponding to sMP , and so on,
the sections in (5) become respectively

sMP = Rg̃ ◦ σMP , g̃ ∈ G , (6)

sΣP = Ra ◦ σΣP , a ∈ H , (7)

and
sMΣ = Rb ◦ σMΣ , b ∈ G/H . (8)

The conditions

g̃ = b · a , σΣP ◦Rb = Rb ◦ σΣP (9)

ensure that, in analogy to (5), the relation

σMP = σΣP ◦ σMΣ (10)

also holds. The usefulness of this structure will become
evident in the following.

In summary, the composite fiber bundles (3) provide
the mathematical foundation for gauge theories involv-
ing non-linear gauge realizations (as the generalization of
induced representations). Relevant physical theories com-
prised among the concerned ones are on the one hand the
standard model – since a correspondence between non-
linear realizations and spontaneous symmetry breaking
exists [25] – and on the other hand non-linear gauge the-
ories of gravity, as developed below. Non-linear realiza-
tions characteristic for such theories take place on prin-
cipal fiber bundles P (M ,G) whose structure group G is
reducible to a closed subgroup H ⊂ G. While the total
symmetry remains that of the gauge group G, one exploits
the possibility of working with the explicit symmetry H of
the principal subbundle of πPΣ : P → Σ whose base space
is the total space of πΣM : Σ → M . (The sections sMΣ

defined on the latter bundle are identified as Goldstone
fields [20].)

2.2 Non-linear realizations
in composite bundles

In [19] it was shown that the composite bundle structure
defined by (4)–(10) provides the natural framework to deal
with non-linear gauge realizations, exactly as standard
principal bundles constitute the arena for the ordinary
gauge treatment of groups. Actually, the main results on
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non-linear realizations [26–31] are easily derived. So, the
non-linear gauge transformation equation

Lg ◦ σΣP (x , ξ) = Rh ◦ σΣP (x , ξ′) (11)

is obtained by comparing two bundle elements, both with
the form (7), differing from each other by the left action
Lg of elements g ∈ G, the latter being local in the sense
that g = g(x), x ∈ M ; see [19] for details. Regarding (11)
referred to the base space M , it manifests itself as a verti-
cal bundle automorphism not affecting x ∈ M , in analogy
to ordinary gauge transformations. Nevertheless, when re-
ferred to the intermediate base space Σ � M ×G/H, the
action of Lg not only transforms the sections σΣP verti-
cally along the H fiber branches by means of Rh, h ∈ H,
but simultaneously it induces a transformation affecting
the points (x , ξ) ∈ Σ, thus mapping H fiber branches
into fiber branches defined on different Σ-points (as ex-
pected for spacetime groups, in particular for translations;
see (33) below).

In order to deal with ordinary geometrical objects de-
fined on the base manifold M , we pull back to the latter,
by means of sMΣ , the quantities defined on the plateau Σ.
Taking into account the property of pullbacks when ap-
plied to functions ϕ, namely f∗ϕ = ϕ ◦ f , we first define
the pullback of σΣP as

σξ(x) := (s∗
MΣσΣP )(x) = σΣP ◦ sMΣ(x) . (12)

Then we calculate s∗
MΣ(Lg ◦ σΣP ) = Lg ◦ σΣP ◦ sMΣ =

Lg ◦σξ and s∗
MΣ(Rh ◦σ′

ΣP ) = Rh ◦σ′
ΣP ◦ sMΣ = Rh ◦σξ′ ,

so that (11) gives rise to

Lg ◦ σξ(x) = Rh ◦ σξ′(x) . (13)

In (13) (see (6.6) of [19]) one recognizes the fundamental
equation for non-linear realizations [26,6,7].

The non-linear gauge transformations of fields induced
by (13) are deduced in Sect. VIII of [19]. Taking in (13)
h ≈ I + µ to be infinitesimal, with µ defined on the Lie
algebra of H, the fields ψ(σξ(x)) := (σ∗

ξ ψ)(x) of any given
representation space of H are found to transform infinites-
imally under G as

δψ(σξ(x)) := σ∗
ξ′ ψ − (Lg ◦ σξ)∗ ψ ≈ ρ(µ)ψ(σξ(x)) , (14)

being ρ(µ) the suitable representation of the H-algebra
element µ. (See (8.11) of [19].) Equations (13) and (14)
summarize the main results of [26]. In the non-linear ap-
proach, the relevant fact is that the fields ψ of represen-
tation spaces of H ⊂ G also constitute a representation
space for the non-linear action (13) of the full group G.

2.3 Bundle approach to non-linear connections
and covariant derivatives

Covariant derivatives of the fields in (14) require the in-
troduction of suitable (non-linear) connections on M . As
a crucial result for this purpose, in the present paragraph

we will derive (26) below, implicit in [19] but not explic-
itly given there, expressing the non-linear connections in
terms of standard (linear) gauge potentials.

Depending on the bundle base space we consider, that
is, either M or the plateau Σ, at least two alternative
expressions can be given for the Ehresmann connection
form. On the one hand, taking the quantities in (6) into
account,

ω = g̃−1( d+ π∗
PM AM ) g̃ , (15)

involving the ordinary gauge potential AM on the base
space M , defined as the pullback

AM = σ∗
MP ω . (16)

On the other hand, with (7) at view,

ω = a−1( d+ π∗
PΣ ΓΣ) a , (17)

where we introduce the non-linear connection on the in-
termediate space Σ, turning out to be the pullback

ΓΣ = σ∗
ΣP ω . (18)

Since g̃ = b·a, see (9), a comparison of (15) and (17) yields

π∗
PΣ ΓΣ = b−1( d+ π∗

PM AM ) b . (19)

From the defining condition πPΣ ◦σΣP = idΣ for sections
follows σ∗

ΣP π
∗
PΣ = idT ∗ (Σ), so that (19) gives rise to

ΓΣ = σ∗
ΣP [ b−1( d+ π∗

PM AM ) b ] . (20)

We operate on (20) taking into account that, in terms of
the pulled back quantity

b̂(x , ξ) := b ◦ σΣP (x , ξ) , (21)

the relations σ∗
ΣP (b−1d b) = b̂−1d b̂, and σ∗

ΣP R
∗
b =

R∗
b̂
σ∗

ΣP hold, in view of b−1π∗
PM AM b = R∗

b π
∗
PM AM and

in view of π∗
PM = π∗

PΣ π∗
ΣM due to (2). We find

ΓΣ = b̂−1( d+ π∗
ΣM AM ) b̂ . (22)

Pulling back (22), defined on Σ, by means of s∗
MΣ , com-

pare with (12), we get

ΓM = s∗
MΣ ΓΣ (23)

as the non-linear connection, defined on the base space
M , which we will deal with in the following. Obviously, in
view of (18) and (12)

ΓM = s∗
MΣ σ∗

ΣP ω = σ∗
ξ ω . (24)

Calculations analogous to those leading from (20) to (22)
allow us to find, in terms of the new pulled back quantity

b̃(x) := b ◦ σΣP ◦ sMΣ(x) = b(σξ(x)) , (25)

the relation
ΓM = b̃−1(d+AM ) b̃ , (26)
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between the non-linear connection ΓM and the linear con-
nection AM , that is, between the alternative pullbacks
(24) and (16) of the connection 1-form ω to M . Our de-
duction of (26) provides a geometrical interpretation of
(19) of [26], (6) of [25] and (2.7) of [32], while it shows the
incompleteness of (2.15) of [28] or (22) of [30]. The im-
portance of (26) for what follows becomes evident in view
of the transformation properties of ΓM , given in (7.14) of
[19], namely

δΓM = σ∗
ξ′ ω − (Lg ◦ σξ)∗ ω ≈ −( dµ+ [ΓM , µ]) , (27)

with µ being the sameH-algebra element as in (14). Equa-
tion (27) shows that only theH-algebra components of ΓM

still transform inhomogenously as H-connections, while
the G/H-algebra components transform as H-tensors. Ac-
cording to (14) and (27), the non-linear covariant differ-
ential defined as

Dψ := (d+ ρ(ΓM ))ψ (28)

transforms as an H-covariant differential

δDψ = ρ(µ)Dψ (29)

under non-linear gauge transformations (13) of the full
group G. The general procedure established here will be
applied in the next section to G as the Poincaré group and
H as the Lorentz group in order to derive PGT.

3 Non-linear Poincaré gauge theory of gravity

3.1 Poincaré covariant derivatives

The main results of the previous section are summarized in
the transformation law (13) and the induced field trans-
formation (14), plus the relation (26) between the non-
linear connection (24) and the linear one (16), with the
corresponding non-linear connection transformation (27).
In terms of these elements, one defines the covariant dif-
ferential (28) transforming as (29).

Now, in order to perform explicit calculations, we need
to transform (13) into a more manageable formula. From
(12) with (8), (9) and (10), we get σξ(x) = Rb ◦ σMP (x).
(In the latter equation we identify b = σ−1

MP (x) · σξ(x) =
b(σξ(x)) =: b̃(x) as given by (25).) Analogously, σξ′(x) =
Rb′ ◦ σMP (x). Replacing these values into (13), it follows
that Lg ◦Rb ◦ σMP (x) = Rh ◦Rb′ ◦ σMP (x). Finally, since
σ−1

MP (x) · g · σMP (x) = g, we find

g · b = b′ · h . (30)

Equation (30) is the form of (13) appearing in [26], appro-
priate for practical computational purposes, with b being
(25) and thus identical with b̃ in (26).

Now we merely apply the general formalism mechan-
ically to the gauge group G = Poincaré, with H =
Lorentz. (Other choices of H have been studied elsewhere
[16].) In (30) we replace the infinitesimal group elements

g ≈ I + i εµPµ + iβαβLαβ of the Poincaré group and
h ≈ I + iµαβLαβ of the homogeneous Lorentz group, and
we parametrize b and b′ respectively as b = e−i ξµPµ with
finite translational parameters ξµ, and b′ = e−i ξ′µPµ with
ξ′µ ≈ ξµ + δξµ. Then, taking into account the Poincaré
commutation relations

[Lαβ , Lµν ] = −i (oα[µLν]β − oβ[µLν]α) , (31)
[Lαβ , Pµ] = i oµ[αPβ] , [Pµ , Pν ] = 0 , (32)

with the help of the Hausdorff–Campbell formula, (30)
yields on the one hand the value µαβ = βαβ for the H-
parameter, and on the other hand

δξµ = −ξνβν
µ − εµ . (33)

Observe how the transformations (33) of the translational
parameters resemble those of Cartesian coordinates.

Let us now pay attention to the connections. Starting
with the ordinary linear ones for the Poincaré group, say

AM = −iΓαβLαβ − i
(T )
ΓµPµ , (34)

we make use of (26) to construct, in terms of (34) and of
b = e−i ξµPµ , the non-linear connections

ΓM = −iΓαβLαβ − iϑµPµ , (35)

where simple calculations yield for the non-linear transla-
tional connection the structure

ϑµ := Dξµ +
(T )
Γµ , (36)

where Dξµ := dξµ+Γν
µξν . More explicitly, since all quan-

tities are pulled back to the base space M , (36) reads

ϑµ = dxi

(
∂iξ

µ + Γiν
µξν +

(T )

Γµ
i

)
=: dxiei

µ , (37)

where we introduce the usual notation ei
µ for vierbeins

in order to show the identification we make of the non-
linear translational connections with the tetrads. Such an
interpretation of tetrads is possible since, in view of (27),
they obey the gauge transformations

δϑµ = −ϑνβν
µ . (38)

In addition we find for the Lorentz part of (35)

δΓα
β = Dβα

β . (39)

As a consistence condition for (33), (36), (38) and (39)
follows the transformation of the linear translational con-
nection

δ
(T )
Γµ = −

(T )
Γ νβν

µ +Dεµ . (40)

Comparison of (40) with the transformations (38) of the
non-linear translational connections (36) clarify why the
latter, as a result of the non-linear approach, can play the
role of tetrads. Actually, tetrad variations (38) constitute
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a particular case of the above mentioned fact that the non-
linear connection components associated to generators of
G not belonging to H behave as H-tensors.

With the previous results at hand, the main task of the
present paragraph is to construct the Poincaré covariant
derivatives of matter fields. As shown by (14), the gauge
action of the full Poincaré group G takes place through
the representation ρ(µ) = iµαβρ(Lαβ) of the algebra of
the Lorentz group H, acting on fields of arbitrary repre-
sentation spaces of H. In particular, for Dirac fields we
take the spinor generators ρ(Lαβ) = σαβ as given by (47)
below, having µαβ = βαβ as mentioned just before (33).
We find

δψ = iβαβσαβψ . (41)

The covariant derivative (28) of such fields, although re-
sembling an ordinaryH-covariant differential, is built with
a non-linear connection defined on the whole G-algebra.
Thus, a representation of the full Poincaré algebra is re-
quired in order to realize the non-linear connection (35)
as

ρ(ΓM ) = −iΓαβσαβ − iϑµπµ , (42)

where πµ = ρ(Pµ) is the finite matrix representation of
translational generators to be studied below. According
to the general formula (28), the Poincaré covariant deriva-
tives of Dirac fields read

Dψ = dψ − i (Γαβσαβ + ϑµπµ)ψ , (43)

transforming in analogy to (41) as

δDψ = iβαβσαβDψ . (44)

Certainly, due to the particular non-linear Poincaré trans-
formations (38) and (41), the contributions associated to
the translational generators are not necessary to guaran-
tee covariance of (43). Nevertheless, the general scheme
requires these contributions to be present in the otherwise
Lorentz covariant derivatives, as an unavoidable heritage
of the gauged Poincaré group. So we need to know how
the G generators not belonging to H act on the fields ψ
of the representation space of H. In our case, this means
that, besides (47), we have to look for the already men-
tioned representation of the translational generators in or-
der to complete the finite matrix realization of the abstract
Poincaré algebra (31) and (32).

3.2 Intrinsic translations of fermion fields

According to our conventions, the Dirac gamma matrices
are defined so that their product reads

γαγβ = −oαβ I − 4iσαβ , (45)

expressed in terms of the Minkowski metric

oαβ := diag (− + ++) (46)

and of the spinor generators

σαβ :=
i
8

[ γα , γβ ] (47)

of the Lorentz group, being σαβ = ρ(Lαβ) the usual 4 × 4
matrix representation of the Lorentz algebra (31) acting
on 4-dimensional Dirac bispinors ψ. Let us discuss how
to extend the Lorentz algebra to the Poincaré algebra,
the latter one constituting a subalgebra of the conformal
algebra as shown in the appendix.

The possibility of constructing also intrinsic transla-
tional operators πµ = ρ(Pµ) from the gamma matrices
rests on the fact that

[σαβ , γµ] = i oµ[αγβ] , (48)

and on the properties of the γ5 matrix, defined as

γ5 := i γ0γ1γ2γ3 , (49)

such that γ2
5 = I and satisfying the commutation relations

[σαβ , γ5] = 0 , (50)

and the anticommutation relations

{ γµ , γ5} = 0 , (51)

and
{σαβ , γµ} = −1

2
ηαβµ

νγνγ5 , (52)

(where ηαβγδ, with α , β , ... = 0, ..., 3, is defined so that
η0abc = εabc, with a, b, c = 1, 2, 3). Making use of these
elements, one finds operators

πµ ∼ γµ( 1 + λ γ5) (53)

to exist, with λ2 = 1, satisfying the commutation relations

[σαβ , πµ] = i oµ[απβ] , [πµ , πν ] = 0 , (54)

characteristic for translational generators; see (32). No-
tice that (54) do not completely determine πµ. Actually,
in (53) a global factor as much as the sign λ (= ±1) re-
mains unfixed. This fact reflects the existence of two in-
equivalent realizations of the full conformal algebra, of
which the Poincaré algebra is a subalgebra. Invoking di-
mensionality consistence of the intrinsic linear momentum
πµ with the orbital linear momentum −i∂µ we require the
former, in natural units � = c = 1, to have dimensions
[L]−1. Since the gamma matrices in (53) are dimension-
less, we are enforced to introduce a dimensional constant,
say m ∼ [L]−1. Let us also fix the undetermined sign in
(53), see the appendix, and define

πµ :=
m

4
γµ( 1 + γ5) , (55)

where the numerical factor is introduced for later conve-
nience.

A remarkable feature of (55) is that πµπν = 0. The re-
sulting anticommutation relations {πµ , πν} = 0 are com-
patible with the finite matrix realization of the Poincaré
algebra given by (47) and (55). Since the commutation re-
lations alone are responsible for the transformations (33)
of the coordinate-like parameters the matter fields depend
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on, they suffice to induce the change from ψ(σξ(x)) into
ψ(σξ′(x)) where their gauge variation (14) is evaluated.

On the other hand, the usual Casimir characterization
of mass still holds in our scheme despite the nilpotence
of πµ by considering the complete translational genera-
tors as consisting of the sum of an orbital plus an intrin-
sic contribution, namely Pµ = iI∂µ + πµ. Observe that,
in the limit of vanishing components of the Lorentz con-
nections, the translational parameters ξµ become indis-
tinguishable from Cartesian coordinates and the covari-
ant derivative (43) reduces to the action of such a Pµ on
fermions as −i dξµPµψ. Since πµ is traceless and πµπν = 0,
the Casimir relation Tr(PµP

µ) ∼ m2 is valid for m 	= 0.
Our intrinsic translational generators (55) resemble

the momentum spin introduced by Gürsey [33] in the
context of the contraction of O(3 , 2) to the Poincaré
group [34]. Indeed, such a momentum spin is conceived
as the intrinsic part of the pseudotranslational genera-
tors Πµ := (1/R)L5µ whose commutation relations, in
the limit R → ∞, reproduce those of Poincaré transla-
tions.

4 Poincaré gauge invariant Dirac action

The discussion of previous section guarantees the transla-
tional contributions in (43) not only to make sense, but
to be an essential part of (non-linear) Poincaré covariant
derivatives. Thus we have all the elements needed to build
the Dirac matter action in the presence of gravity, when
the latter is described by (non-linear) PGT. Following the
notation of [35], with γ := ϑµγµ, and ∗γ its Hodge dual,
the Dirac Lagrange density 4-form – without explicit mass
term – reads

LD =
i
2
ψ ∗γ ∧Dψ + h.c. , (56)

with the usual definition ψ := ψ†γ0, and h.c. standing for
the Hermitian conjugate of the given term. Let us calcu-
late the latter in order to make all our conventions explicit.
From (45) we get γ2

0 = 1. Provided

γ0γ†
µγ

0 = γµ , (57)

as it is the case for instance for the Dirac representation
of gamma matrices in terms of Pauli matrices as

γ0 =

(
I 0
0 −I

)
, γa =

(
0 σa

−σa 0

)
, γ5 =

(
0 I
I 0

)
, (58)

we realize that(
i
2
ψ ∗γ ∧Dψ

)†
=

i
2
Dψ ∧ ∗γψ , (59)

with Dψ := (Dψ)†γ0. Furthermore, (45) with (57) yields

γ0σ†
αβγ

0 = σαβ , (60)

guaranteeing the invariance of (56) by enforcing ψ to
transforms as

δψ = (δψ)†γ0 = −iψ βαβσαβ , (61)

and on the other hand from definition (49) with (57) we
get

γ0γ†
5γ

0 = −γ5 . (62)
Applying (57) and (62) to (55), it follows that

γ0π†
µγ

0 = πµ , (63)

a result which was not a priori obvious. Taking (60) and
(63) into account, from (43) we find

Dψ := (Dψ)†γ0 = dψ + iψ(Γαβσαβ + ϑµπµ) , (64)

transforming as

δDψ = −iDψ βαβσαβ , (65)

compare with (61). If desired, in order to take into ac-
count other forces besides gravitation, one can extend the
gauge symmetry replacing the Poincaré group by the di-
rect product of Poincaré times an internal group. To do
so, one merely has to replace (43) by

Dψ = dψ + i (gA− Γαβσαβ − ϑµπµ)ψ (66)

(and analogously (64)) without affecting what follows. In
view of the previous results, the explicit form of (56) be-
comes

LD =
i
2

(ψ ∗γ ∧Dψ +Dψ ∧ ∗γψ) . (67)

Let us separate the translational parts, no more indispens-
able for the covariance of the covariant derivatives, from
(43), (respectively (66)) as

Dψ =: D̃ψ − iϑµπµψ , (68)

and analogously

Dψ =: D̃ψ + iψ ϑµπµ , (69)

see (64), where the tildes denote the translations-
independent pieces. Replacing (68) and (69) in (67), the
Lagrange density transforms into

LD =
i
2

(ψ ∗γ ∧ D̃ψ + D̃ψ ∧ ∗γψ) + ∗mψψ , (70)

where we made use of the fact that ϑα ∧ ∗ϑβ = δα
β η, with

η = ∗1 as the 4-dimensional volume element, so that
∗γ ∧ ϑµπµ = −η γµπµ = ∗m (1 + γ5) , (71)

and
−ϑµπµ ∧ ∗γ = −η πµγ

µ = ∗m (1 − γ5) . (72)
Although γ5 is necessary to guarantee the commutation
relations (54) to hold, both contributions (71) and (72)
are combined in the action in such a way that γ5 cancels
out. So the matter Lagrange density (70) merely retains
a mass term, which is unavoidable since it derives from
the translational contribution to the Poincaré connection
(42). Accordingly, either one of the projections ψL or ψR

is lacking (in which case ψψ = 0), or otherwise the field ψ
is necessarily massive.
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5 Conclusions

Independently from other possible origins of fermion
masses, a gravitational background mass contribution is
predicted by PGT when treated as a non-linear local real-
ization of the Poincaré group. Provided both left and right
projections of Dirac fields are simultaneously present, (70)
prevents massless Dirac fields from existing. The irremov-
able fermion masses are a consequence of gravitational
interaction (in particular of the underlying translational
group) in the context of PGT as the fundamental theory
of gravity.

As a phenomenological consequence, when considered
together with the standard model, PGT gives rise to a
background contribution of gravitational origin to the
masses of all fermions: in particular to the quark mass
parameters of the QCD sector of the Lagrangian, as much
as to the neutrino masses. Neutrinos are thus predicted
by PGT to be massive. Certainly, our approach does not
determine the value of the universal translational mass
parameter m. However, from the observed masses of neu-
trinos it is clear that m (the same for all fermions) has to
be very small, so that, accordingly, its contribution to the
observable hadron masses is expected to be quite limited.

Matter currents corresponding to the Poincaré sym-
metry are the spin current ταβ := ∂LD/∂Γ

αβ and the

energy-momentum 3-form Σµ := ∂LD/∂
(T )
Γµ = ∂LD/∂ϑ

µ.
The former is found to be ταβ = − 1

4 ψ ϑα ∧ ϑβ ∧ γγ5ψ
as it is well known. Its coupling term to the Lorentz con-
nection Γαβ falls off from the action in the limit of ab-

sence of gravity (that is for Γαβ = 0,
(T )
Γµ = 0). Instead,

the mass term does not cancel out in this limit. The rea-
son is that, according to the non-linear approach to PGT,
the tetrads have the structure (36), not vanishing for zero
linear connections. Actually, ordinary Minkowskian flat
spacetime may be regarded as the residual structure left
by non-linear PGT in the absence of the gravitational
force carried by spin connections, that is in the limit where
the components of the latter ones are chosen to vanish.
The tetrads are in this case ϑµ = dξµ , so that the mass
term associated to them still remains in the action despite
translational linear connections are switched out.

Appendix A:
The O(2 ,4) and the Poincaré algebra

The Poincaré algebra is a subalgebra of the conformal al-
gebra [36] to be examined here. Consider the O(2 , 4) gen-
erators LAB = −LBA, A ,B , ... = 0, ..., 3, 5, 6, satisfying
the commutation relations

[LAB , LMN ] = −i (gA[MLN ]B − gB[MLN ]A) , (A.1)

where the 6-dimensional metric tensor is taken to be

gAB = diag (− + ++,+−) . (A.2)

In order to relate (A.1) to the ordinary form of the confor-
mal commutation relations, let us decompose (A.2) into
the Minkowski metric

gαβ = oαβ := diag (− + ++) , (A.3)

where α , β = 0, ..., 3, plus

g55 = 1 , g66 = −1 , (A.4)

and define the translational generators

Pµ := Lµ5 + Lµ6 , (A.5)

the special conformal generators

Kµ := Lµ5 − Lµ6 , (A.6)

and the dilatational generators

D := −2L56 . (A.7)

In terms of Lαβ , (A.5), (A.6) and (A.7), the commutation
relations (A.1) give rise to the conformal algebra

[Lαβ , Lµν ] = −i (oα[µLν]β − oβ[µLν]α) , (A.8)
[Lαβ , Pµ] = i oµ[αPβ] , (A.9)
[Lαβ ,Kµ] = i oµ[αKβ] , (A.10)

[Pµ ,Kν ] = i
(
Lµν +

1
2
oµνD

)
, (A.11)

[D ,Pµ] = −iPµ , (A.12)
[D ,Kµ] = iKµ , (A.13)
[Pµ , Pν ] = [Kµ ,Kν ] = [D ,Lµν ] = [D ,D] = 0 .

(A.14)

As pointed out in [36], all finite-dimensional representa-
tions of the O(2 , 4)-algebra can be obtained by reduc-
ing out tensor products of two inequivalent fundamental
4-dimensional representations (corresponding respectively
to the choices λ = ±1 in what follows) built from the
gamma matrices as

ρ(Lαβ) = σαβ :=
i
8

[ γα , γβ ] , (A.15)

ρ(Lµ5) =
1
2

(πµ + κµ) = λ
m

4
γµγ5 , (A.16)

ρ(Lµ6) =
1
2

(πµ − κµ) =
m

4
γµ , (A.17)

ρ(L56) = −1
2
∆ = −λ i

4
γ5 . (A.18)

Obviously, as read out from (A.16), (A.17) and (A.18),
the corresponding fundamental inequivalent representa-
tions of (A.5), (A.6) and (A.7) read

πµ :=
m

4
γµ( 1 + λγ5) , (A.19)

κµ := −m

4
γµ( 1 − λγ5) , (A.20)
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and
∆ := λ

i
2
γ5 , (A.21)

where the role of πµ and κµ is interchangeable by fixing
λ to be either ±1, and by accordingly change the sign of
(A.21). The Poincaré algebra considered in the main text
is the subalgebra of the conformal algebra consisting of
the spin and translational generators only, having fixed
λ = 1.
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